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Climate predictions



“Deterministic limit”



• Currently: different model for each time scale

• Future: ”seamless” predictions



Source: WCRP



The two main sources of uncertainty in dynamical climate prediction 
are:

o the lack of perfect knowledge of the initial conditions of the 

climate system

Sources of forecast uncertainty

o the inability to perfectly model this system 

parameter pertubation, multimodel approach



Climate predictions are ensemble predictions

https://www.dwd.de/EN/ourservices/kvhs_en/help/1_bkgrd_info/04_predictions/pics/ensemble.jpg



Operational since October 2020

Atmosphere
Community Atmosphere 
Model

CAM5.3  (.5°x.5° - 46 v. lev)

River routing
River Transport 
Model

RTM (0.5°x0.5°) 

Land / Vegetation
Community Land Model
CLM4.5 (.5°x.5°) 

Ocean
Nucleus for European 

Modelling of the Ocean

NEMO 3.4     (1/4°x1/4° -
50 v. lev.)

Sea Ice
Community Ice 

Code

CICE4 
(1/4°x1/4°)

Coupler / 

Driver
CPL7

CMCC Seasonal Prediction System: SPS3.5



The CMCC-SPSv3.5 initialization 

9 OCEAN ANALYSIS

resulting from data 

assimilation

3 CLM4.5 forced 

with ECMWF and 

NCEP

atmospheric 

forcing to Land 

Surface

10 atmospheric 

ICs (1 day back 

lagged in time + 

SPS3.5 forecast)

270 

ICs
50 

forecast 

members
Perturbed ocean I.C.s are created by

generating nine (9) reanalyses through

perturbation of the ocean observations (in the

analysis step), perturbation of atmospheric

forcing and introduction of stochastic physics,

in the forecast step.

Ten (10) atmospheric I.C.s are prepared

starting from 1-day back in time atmospheric

states provided by the 10 EDA analyses,

interpolated to the CAM grid, then integrated in

time in the SPS3.5 system up to the actual

forecast start-date (1rst of the month, h:

00:00).

Three (3) land state I.C.s are obtained from

the land analyses performed with CLM forced

with atmospheric fields from different analyses

(ECMWF, NCEP, linear interpolation of the 2)



sps.cmcc.it

Deterministic forecast



Probabilistic forecast



Seasonal prediction skill



Climate models resolution

• Climate models numerically approximate 
fluid dynamics equations on a discrete lat-
lon grid.

• The resolution of the horizontal grid is 
determined by the available computer 
power.

• Sub-grid processes are represented by 
physical parameterizations.

• Parameterizations are computationally 
expensive and depend on a large number of 
arbitrary parameters.

➢ The large number of ensemble members 
needer to produce skilful climate predictions 
limits the horizontal resolution to about 50 
kms on today’s supercomputers.



Climate model resolution and extreme events

Low-resolution models reproduce only a fraction of the observed cyclones, and are not able to reproduce 
intense cyclones 

Roberts et al (2020): Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble 



AI and climate 
modeling



Tropical cyclones

Tropical cyclones are severe weather systems that form over tropical and subtropical 
waters. They are also known as typhoons, hurricanes, or tropical storms depending on the 
region they form in. Tropical cyclones are characterized by strong winds, heavy rainfall, 
and high waves, which can cause widespread damage and pose a threat to coastal 
communities.

The formation of tropical cyclones is driven by the release of heat from the warm ocean 
waters. This heat energy creates an area of low pressure, which draws in air from 
surrounding areas. As the air rises and cools, moisture condenses and forms clouds, 
leading to the formation of a tropical cyclone. The cyclone develops a distinct eye, which is 
the center of the storm, and a surrounding area of intense winds and rainfall.

Tropical cyclones can cause significant damage and loss of life, particularly in coastal 
communities. Strong winds and high waves can cause structural damage to buildings and 
infrastructure, and heavy rainfall can lead to flash flooding and landslides. Tropical 
cyclones can also disrupt transportation and commerce, as ports and airports may close 
during the storm. In addition, the storm surge associated with tropical cyclones can cause 
significant coastal flooding, particularly in low-lying areas.

There are several ways to measure the intensity of tropical cyclones, including the Saffir-
Simpson Hurricane Wind Scale, which classifies storms based on the maximum sustained 
winds. The scale ranges from Category 1, with winds of 74-95 mph, to Category 5, with 
winds in excess of 157 mph. In addition, the National Hurricane Center in the US uses a 
central pressure measurement to determine the intensity of a tropical cyclone.

“Hurricane making landfall”, E. Delacroix

100% AI-generated slide! 



Climate and AI: Open Research Directions

• AI to replace numerical models

• AI to improve climate modelling parameterizations

• AI to improve the detection of weather systems

• AI to improve numerical climate predictions and projections







FourCastNet: A Global Data-driven 

High-resolution Weather Model 

using Adaptive Fourier Neural 

Operators (arXiv:2202.11214)





Limitations

• Model skill have a comparable decay with respect to lead time with numerical models 

• Not yet demonstrated whether a fully data driven forecast can reproduce unprecedented (i.e. 
not seen in the training set) events

• The data driven weather forecast model still needs reanalysis data (which are generated by a 
numerical model) for the training

• Data-driven climate prediction models still need numerical climate simulations in the 
training



AI to improve Climate modelling

• Climate models numerically approximate
fluidodynamics equations on a discrete lat-
lon grid.

• The resolution of the horizontal grid is
determined by the available computer 
power.

• Sub-grid processes are represented by 
phyiscal parameterizations.

• Parameterizations are computationally
expensive and depend on a large number of 
arbirary parmaters.

• Parameterizations can be replaced by 
machine learning models trained on 
observations

• ML models are only trained once so running
long climate simulations become less
computationally expensive



AI to improve weather events detection

• The detection of extreme events relies on algorithms developed for low resolution model data/ 

observations

✓ Depend on a number of expert-determined thresholds for physical variables, that can be resolution or 

data source dependent

✓ Are computationally inefficient

• Example: for the detection of a tropical cyclone look for all the minima in the mean sea level field, 

calculate the wind speed associated, then repeat for all time steps, then assign nearby points to the same 

cyclone track.

• Machine learning/deep learning can automate the detection process and make it more efficient



AI to improve climate prediction and projections

• In order to correctly reproduce extreme events climate models need to have a high spatial resolution

• This is not always computationally feasible because of the long integrations required (climate 

projections) and/or the large number of ensemble members needed to represent the uncertainty 

range (climate predictions)

• AI algorithms can improve the predictions e.g. exploiting the relationship between the extreme 

events and its large-scale drivers (which are better predicted by the model).



https://s2s-ai-challenge.github.io/

ML model trained on 

reanalysis to detect the 

cyclones large-scale drivers, 

then applied to SPS output



Tropical cyclones and 
climate prediction



Tropical Cyclones 

• Tropical cyclones are         
non-frontal low pressure 
systems in the troposphere   
(at low latitudes)

• The pressures at the centers 
of TC are among the lowest
ever observed at sea level (as 
low as 870 hPa)

• The eye (centre of a tropical 
cyclone) is an area of light 
winds and clear skies. Eye 
diameters are typically 40 km
(from 10 to 100 km) 

• The eye is surrounded by a 
dense ring of clouds about 16 
km high known as the eye 
wall which marks the belt of 
strongest winds and heaviest 
rainfall.



• Develop over warm water of the 
tropical and subtropical oceans

• Highly organized convection 
(‘fuel’ for TC)

• Intense rainfall

• Strong cyclonic wind near the 
surface

• Strong pressure gradient near 
eye directly associated with 
strong winds

• In order to be classified as a TC, 
surface winds greater than 33 
m/s must be observed

• Last for many days and may 
experience extratropical 
transition



A tropical cyclone may be viewed as a heat engine that converts input heat energy from the surface into mechanical energy 
that can be used to do mechanical work against surface friction:
1. inflowing air near the surface acquires heat primarily via evaporation of water (i.e. latent heat) at the temperature of 

the warm ocean surface (during evaporation, the ocean cools and the air warms)
2. the warmed air rises and cools within the eyewall while conserving total heat content (latent heat is converted to 

sensible heat during condensation).
3. air outflows and loses heat via infrared radiation to space at the temperature of the cold tropopause
4. Finally, air subsides and warms at the outer edge of the storm while conserving total heat content. 



TCs as a Carnot engine
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Figure 4 Cross-section of a variety of quantities from a simple numerical model of a tropical cyclone (Emanuel 1995a). The right-hand

panel shows a measure of the total specific entropy content of the air (shading), with blue colors denoting relatively small values and red

colors showing larger values. The black contours show surfaces of constant absolute angular momentum per unit mass, about the axis of the

storm, with values increasing outward. The arrows give an indication of the air motion in this plane. In the left-hand panel, the shading shows

the temperature perturbation from the distant environment at the same altitude, with blue colors showing values near zero and red showing

high values. The lavender contours near the bottom show the inward radial velocity, whereas the red contours closer to the top show outward

radial velocity.

Annu. Rev. Earth Planet. Sci. 2003.31:75-104. Downloaded from www.annualreviews.org
by NEW YORK UNIVERSITY - BOBST LIBRARY on 01/30/12. For personal use only.

adiabatic
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TC Climatology

• On average 80 TC per year (no 
theory to date to explain this 
number!)

• Between 100 and 2 000 km in 
diameter

• At least 500 km from the 
equator

• No TCs in the south Atlantic and 
east-western south Pacific

Develop in low latitudes from a pre-existing tropical low of some kind with sizeable spin and low-level inflow

Transition to TC occurs if:

• Warm ocean (> 26.50 C)

• Unstable atmosphere (cools fast enough with height to encourage thunderstorm activity)

• Moist middle atmosphere (to support thunderstorm activity)

• Low vertical wind shear (little change of wind with height)



TC intensity

Ck: enthalpy exchange coefficient

CD: drag coefficient

Ts: surface temperature

T0: outflow temperature

k: enthalpy of air near the surface (boundary layer)
k0*: enthalpy of air in contact with the ocean (water vapour saturation)



The importance of TC seasonal forecast





TC Seasonal Predictions
https://seasonalhurricanepredictions.bsc.es/predictions

https://seasonalhurricanepredictions.bsc.es/predictions


TC predictability

• Good skill in NWP up to 5 days

• What about longer time scales?



TC Seasonal Predictions

1. Dynamical approach
• Seasonal Prediction System: GCM initialized at 1-2 months lead time with slow-varying 

initial conditions (e.g. SST, soil moisture, sea ice)

• Large ensemble (~ 50) of simulations obtained by perturbing initial conditions, allowing 
for probabilistic forecast

• Apply TC detection scheme to all simulations

2. Statistical approach
• Find a statistical relationship between the number of TCS and the state of the system at 

given lead time (e.g. analogues)

3. Hybrid approach
• Find a statistical relationship between large-scale drivers and observed TCs

• Apply the relationship to the large-scale variables predicted by the dynamical system



TC dynamical predictions

Befort et al. 2022



Befort et al. 2022 Cyclone track density



Befort et al. 2022



TC predictions

TROPICAL CYCLONE GENESIS POTENTIAL INDEX 

•The tropical cyclone Genesis Potential Index (GPI) links the probability of TC formation to large-
scale climate fields.

•The advantage of such formulation lies in the ability to predict TC activity without having to rely on 
the climate models skill in reliably reproducing individual TCs.

•Several formulations of GPI exist, e.g. as given by Emanuel & Nolan (2014).

Vorticity
Humidity Potential 

intensity

Wind

shear



[Camargo et al 2007]

•Reproducing the spatial variability of TC genesis

•Reproducing the seasonal cycle of TC genesis

GPI IS (FAIRLY) GOOD AT:

[Tippett et al 2011]

NH SH



GPI Interannual variability

Cavicchia et al. under reviewAscenso et al. 2023

• GPI has a low skill in representing interannual variability
• decrease in performance when applied to GCM data. Overfitting?
• the GPI formula is hyper-parametrized with many arbitrary coefficients, are they optimally 
selected?



• Multi-function optimization algorithm applied
• All the numerical coefficients of GPI allowed to vary
• Pressure level for the large-scale variables also allowed to vary
• Pareto front of solutions

Ascenso et al. 2023



• RH at very high altitudes (up to 1 hPa)

and with very low exponents (~0.1)

• MPI also with very low exponents (~0.2)

• Absolute vorticity at 600 hPa (vs 850 of 

ENGPI)

Ascenso et al. 2023



• RH and MPI lower exponents than in ENGPI

• (~1.5 vs 3 in ENGPI)

• Wind shear between 850 and 250 (vs 850-200 in 

ENGPI)

• Absolute vorticity at 600 hPa (vs 850 of ENGPI)

Ascenso et al. 2023



• RH and MPI exponents similar to ENGPI (~3)

• Wind shear between 600 and 250 (vs 850-200 in 

ENGPI)

• Absolute vorticity at 500 hPa (vs 850 of ENGPI)

Ascenso et al. 2023



Take-home messages

1. Climate predictions: achievements and challenges

• Predictions on time scales longer than two weeks are based on large ensemble of  climate 
model simulations

• At the horizontal resolution allowed by current supercomputers prediction of extreme events 
remain challenging

2. Artificial intelligence and climate modelling

• Artificial intelligence has recently entered the arena of weather and climate forecast in a 
number of different ways

• A promising direction of research is hybrid AI-numerical forecast, with the two 
complementing each other

3. Climate prediction of tropical cyclones

• Tropical cyclones are one of the worst category of natural disaster, and they are a good test 
for new methods for AI-enhanced prediction




