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» Climate predictions: achievements and challenges
 Artificial intelligence and climate modelling

« Climate prediction of tropical cyclones



Climate predictions




“Deterministic limit”
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tal T o » Currently: different model for each time scale
a

predictability comes from initial  Future: ”seamless”predictions

atmospheric conditions

S2S PREDICTIONS

predictability comes from initial
atmospheric conditions, monitoring the
land/sea/ice conditions, the stratosphere

excellent and other sources
SEASONAL OUTLOOKS

] predictability comes primarily from
— good sea-surface temperature conditions;
% accuracy is dependent on ENSO state
O
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a Predictability sources and timescales

.alvalue problem Boundary value problem .

S2D

Y
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S2|
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Deep ocean/GHG emission/land use

Y

S2S

A

PDV/AMV/GMST

ENSO/seaice

Predictability sources —

Stratosphere (QBO, SSWs)
MJO/NAO

Soil moisture/sea ice

.‘ Month Season Year Decade Century

Weather Subseasonal Seasonal Interannual Decadal Climate

Timescales of prediction
Source: WCRP



. ________________________________________________
Sources of forecast uncertainty

The two main sources of uncertainty in dynamical climate prediction

are:
o the lack of perfect knowledge of the initial conditions of the

climate system

forecast

o the inability to perfectly model this system

> parameter pertubation, multimodel approach



Climate predictions are ensemble predictions

» lllustration of ensemble mean prediction and probabilistic prediction:

€) Multiple climate simulations (left side) form 9 Eiicainble maai 9 Probabilistic prediction

a prediction ensemble. prediction
Climate simulations =
indivi ' icti Prediction ensemble
@ The individual C//ma,tepred/ct/ons are M Above-normal
expressed as a deviation (anomaly) from & .

a reference period in the past. The mean of
all simulations of the prediction ensemble forms
the ensemble mean prediction.

66th tercile

_____ - — ————==- Normal

9 Dividing the individual climate predictions into the
categories “above-normal”, “normal”, and
“below-normal" (separated by the 33rd and
66th terciles of the reference period) leads
to the probabillistic prediction (right side).

33rd tercile

Below-normal

https:/Mmww.dwd.de/EN/ourservices/kvhs_en/help/1_bkgrd_info/04 predictions/pics/ensemble.jpg



CMCC Seasonal Prediction System: SPS3.5

River routing

Atmosphere

Community Atmosphere
Model

| CAVE 3 (5°X5° =246 V. Tev)

Land/ Vegetation

Community Land Model
CLM4.5 (.5°x.5°)

River Transport
Model

RTM (0.5°x0.5°)

Coupler/

Driver

Ocean
Nucleus for European
Modelling of the Ocean
NEMO 3.4 (1/4°x1/4° -]
50 v. lev.) |

Operational since October 2020

CPL7

Sealce
Community Ice
Code

CICE4
(2/4°x1/4°)




The CMCC-SPSv3.5 initialization

Ten (10) atmospheric I.C.s are prepared
starting from 1-day back in time atmospheric
states provided by the 10 EDA analyses,
interpolated to the CAM grid, then integrated in
time in the SPS3.5 system up to the actual
forecast start-date (1rst of the month, h:
00:00).

Three (3) land state I.C.s are obtained from
the land analyses performed with CLM forced
with atmospheric fields from different analyses
(ECMWEF, NCEP, linear interpolation of the 2)

Perturbed ocean |.C.s are created by
generating nine (9) reanalyses through
perturbation of the ocean observations (in the
analysis step), perturbation of atmospheric
forcing and introduction of stochastic physics,
in the forecast step.

10 atmospheric

ICs (1 day back
lagged in time +
SPS3.5 forecast)

3 CLM4.5 forced
with ECMWF and
NCEP
atmospheric
forcing to Land
Surface

9 OCEAN ANALYSIS
resulting from data
assimilation

270
ICs

50
forecast

members
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Start-date 01-2023 Lead season 1 (FMA)

prob (t2m > upper tercile)
Probabilistic forecast
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SPS3.5: ACC global t2m (1993-2016) - members 40
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Seasonal prediction skill
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Climate models resolution

* Climate models numerically approximate
fluid dynamics equations on a discrete lat-
lon grid.

» The resolution of the horizontal grid is
determined by the available computer
power.

» Sub-grid processes are represented by
physical parameterizations.

* Parameterizations are computationally
expensive and depend on a large number of
arbitrary parameters.

» The large number of ensemble members
needer to produce skilful climate predictions
limits the horizontal resolution to about 50
kms on today’s supercomputers.

Horizontal Grid
(latitude~-longitude)

Vertical Grid
(height or pressure)

Sub-grid
Physical Processes

Better representation of
the surface features

Parameterization




Climate model resolution and extreme events

(a) LR: Composite storms for 925 hPa tangential wind and psl hPa
880-920 hPa 920-945 hPa 945-965 hPa 965-980 hPa 980-995 hPa 995-1020 hPa (b) HR: Composite storms for 925 hPa tangential wind and psl
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Low-resolution models reproduce only a fraction of the observed cyclones, and are not able to reproduce
intense cyclones



Al and climate
modeling




Tropical cyclones

Tropical cyclones are severe weather systems that form over tropical and subtropical
waters. They are also known as typhoons, hurricanes, or tropical storms depending on the
region they form in. Tropical cyclones are characterized by strong winds, heavy rainfall,
and high waves, which can cause widespread damage and pose a threat to coastal
communities.

The formation of tropical cyclones is driven by the release of heat from the warm ocean
waters. This heat energy creates an area of low pressure, which draws in air from
surrounding areas. As the air rises and cools, moisture condenses and forms clouds,
leading to the formation of a tropical cyclone. The cyclone develops a distinct eye, which is
the center of the storm, and a sur

Tropical cyclones can cause signi 1 00% AI -generatEd SI id&!

communities. Strong winds and h
infrastructure, and heavy rainfall can lead to jlash flooding and landshdes. Iropica
cyclones can also disrupt transportation and commerce, as ports and airports may close
during the storm. In addition, the storm surge associated with tropical cyclones can cause
significant coastalflooding, particularly in low-lying areas.

There are several ways to measure the intensity of tropical cyclones, including the Saffir-
Simpson Hurricane Wind Scale, which classifies storms based on the maximum sustained

winds. The scale ranges from Category 1, with winds of 74-95 mph, to Category 5, with “Hurricane making landfall’, E. Delacroix
winds in excess of 157 mph. In addition, the National Hurricane Centerin the US uses a
central pressure measurement to determine the intensity of a tropical cyclone.




Climate and Al: Open Research Directions

Al to replace numerical models

Al to improve climate modelling parameterizations

Al to improve the detection of weather systems

Al to improve numerical climate predictions and projections
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NVIDIA to Build Earth-2 Supercomputer to See Our Future




ClimaX ) microsoft/Climax

ClimaX

A foundation model for weather and climate.

Paper

Code (coming soon) ()

G What is ClimaX?

. Downscaling

Regional
* (3 ClimaX is the first foundation model for weather and climate science.
@ Global J Simple, flexible, and easy to use.

J Ample examples for the workflow to apply to various downstream tasks ranging from weather

Climate

Projections ""

Downscaling ’

At = hrs At =~ days At = weeks At = months/year
Nowcasting Short & Medium-range  Sub-seasonal Seasonal forecasting to climate downscaling.

: - O sas r.'@:.\

-

(2 Supports efficient scalable distributed training, powered by PyTorch Lightning
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Limitations
» Model skill have a comparable decay with respect to lead time with numerical models

» Not yet demonstrated whether a fully data driven forecast can reproduce unprecedented (i.e.
not seen in the training set) events

» The data driven weather forecast model still needs reanalysis data (which are generated by a
numerical model) for the training

» Data-driven climate prediction models still need numerical climate simulations in the
training



Al to improve Climate modelling

Climate models numerically approximate
fluidodynamics equations on a discrete lat-
lon grid.

The resolution of the horizontal grid is
determined by the available computer
power.

Sub-grid processes are represented by
phyiscal parameterizations.

Parameterizations are computationally
expensive and depend on a large number of
arbirary parmaters.

Parameterizations can be replaced by
machine learning models trained on
observations

ML models are only trained once so running
long climate simulations become less
computationally expensive

Horizontal Grid
(latitude~-longitude)

Vertical Grid
(height or pressure)

Sub-grid
Physical Processes

Better representation of
the surface features

Parameterization




Al to improve weather events detection

« The detection of extreme events relies on algorithms developed for low resolution model data/
observations

v' Depend on a number of expert-determined thresholds for physical variables, that can be resolution or
data source dependent

v Are computationally inefficient

« Example: for the detection of a tropical cyclone look for all the minima in the mean sea level field,
calculate the wind speed associated, then repeat for all time steps, then assign nearby points to the same
cyclone track.

* Machine learning/deep learning can automate the detection process and make it more efficient



Al to improve climate prediction and projections

» In order to correctly reproduce extreme events climate models need to have a high spatial resolution

« This is not always computationally feasible because of the long integrations required (climate
projections) and/or the large number of ensemble members needed to represent the uncertainty

range (climate predictions)

« Al algorithms can improve the predictions e.g. exploiting the relationship between the extreme
events and its large-scale drivers (which are better predicted by the model).




observations
initial conditions

Predictor
ML model trained on

Machine Learning Model ML model | ML model Il reanalysis to detect the.
cyclones large-scale drivers,

l then applied to SPS output

Predictand ML forecasts

| | scor

Ground Truth observations

https://s2s-ai-challenge.github.io/



Tropical cyclones and
climate prediction




Tropical Cyclones

" nonfrontal Iow pres B —
non-frontal low pressure
systems in the troposphere
(at low latitudes)

 The pressures at the centers =
of TC are among the lowest
ever observed at sea level (as
low as 870 hPa)

» The eye (centre of a tropical
cyclone) is an area of light
winds and clear skies. Eye
diameters are typically 40 km
(from 10 to 100 km)

* The eye is surrounded by a
dense ring of clouds about 16
km high known as the eye
wall which marks the belt of
strongest winds and heaviest
rainfall.

Inflow



* Develop over warm water of the
tropical and subtropical oceans

* Highly organized convection
(‘fuel’ for TC)

* |ntense rainfall

HURRICANE STRUCTURE

* Strong cyclonic wind near the
surface

e Strong pressure gradient near : - _ _
eye directly associated with \ L) Cold falling air
strong winds | |

* In order to be classified as a TC, Eye wall
surface winds greater than 33 k. - Eye
m/s must be observed L e Rain bands

e Last for many days and may
experience extratropical
transition



A tropical cyclone may be viewed as a heat engine that converts input heat energy from the surface into mechanical energy

that can be used to do mechanical work against surface friction:

1. inflowingair near the surface acquires heat primarily via evaporation of water (i.e. latent heat) at the temperature of
the warm ocean surface (during evaporation, the ocean cools and the air warms)

2. the warmed airrises and cools within the eyewall while conserving total heat content (latent heat is converted to

sensible heat during condensation).

air outflows and loses heat via infrared radiation to space at the temperature of the cold tropopause

4. Finally,air subsides and warms at the outer edge of the storm while conserving total heat content.

w

Air flows outwardly from the
center, in the cooler upper levels
of the storm

The warm, humid air rises
rapidiy .n thunderstorm
updrafts near the center

v

P 24 X\ \‘\
- I"‘.w L\
R 4 ] W

Eye- / Rainbands
Eyewall



TCs as a Carnot engine

Equivalent potential temperature (K), from 334.4955 to 373.3983

Step 1
Isothermal at Ty

P Step 4

Adiabatic

Step 2
Adiabatic

Step 3
Isothermal at T

60 80 100 120 140 160 180 2 V
Radius (km)




TC Climatology

* On average 80 TC per year (no
theory to date to explain this
number!)

+ Between 100 and 2 000 km in iz
diameter n

e At least 500 km from the
equator

e No TCs in the south Atlantic and
east-western south Pacific

Develop in low latitudesfrom a pre-existing tropical low of some kind with sizeable spin and low-level inflow
Transition to TC occurs if:

 Warm ocean (> 26.5°C)

* Unstable atmosphere (cools fast enough with height to encourage thunderstorm activity)

* Moist middle atmosphere (to support thunderstorm activity)

* Low vertical wind shear (little change of wind with height)



TC intensity

C,: enthalpy exchange coefficient
Cp: drag coefficient
2 1o "y T, surface temperature
|Vmax| ~~ C T (ko T k) T,: outflow temperature
D 0 k: enthalpy of air near the surface (boundary layer)
ko*: enthalpy of air in contact with the ocean (water vapour saturation)

aan

MARCH MEAN
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The importance of TC seasonal forecast

Insured catastrophe losses, 200

1970-2019, in USD billion at

2019 prices

150 e O (9

1. Hurricane Andrew
2. Winter Storm Lothar 100 10
3 WIC 8
4. Hurricanes lvan, Charley, Frances < @ 1
5. Hurricanes Katrina, Rita, Wilma 50 0 g_e
6. Hurricanes lke, Gustav
/. Japan, NZ earthquakes, Thailand flood n ‘ I I I
8. Hurricane Sandy 0
9. Hurricanes Harvey, Irma, Maria 1970 19756 1980 1985 1990 1995 2000 2005 2010 2015

©

Camp Fire, Typhoon Jebi M Earthquake/tsunami B Weather-related catastrophes Man-made disasters
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. Typhoons Hagibis, Faxai

Source: Swiss Re Institute
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TC Seasonal Predictions

https://seasonalhurricanepredictions.bsc.es/predictions

Normal activity

: Low activity



https://seasonalhurricanepredictions.bsc.es/predictions

TC predictability

» Good skill in NWP up to 5 days

- What about longer time scales? Trump shows an apparently altered map showi...

Hurricane Doria

n
Thursday August
i3 mAs:w 29, 22:):9

NWS National Huricane Center

winds: D<39
QLential rack area:  Watches: 3973 mBh H74:110 mgh M 110 mph

A Day 45

Current wing ext
ent:
Stm .Nuncgn. 1 Trop Stm

Trump shows an apparently altered map showing
Hurricane Dorian impacting Alabama



TC Seasonal Predictions

1. Dynamical approach

» Seasonal Prediction System: GCM initialized at 1-2 months lead time with slow-varying
initial conditions (e.g. SST, soil moisture, sea ice)

« Large ensemble (~ 50) of simulations obtained by perturbing initial conditions, allowing
for probabilistic forecast

» Apply TC detection scheme to all simulations

2. Statistical approach

» Find a statistical relationship between the number of TCS and the state of the system at
given lead time (e.g. analogues)

3. Hybrid approach
» Find a statistical relationship between large-scale drivers and observed TCs
« Apply the relationship to the large-scale variables predicted by the dynamical system



# of TCs [per year]

12

104

TC dynamical predictions

Model Initial dates Atmosphere resolution Ocean resolution Ensemble size
ECMWF SEASS (ECMWF-SEASS) May, June TCO319/L91 = 32 km 0.25°/L75 25
GloSea5-GC2 (UKMO-GloSea5-GC2) May, June N216/L85 = 90 km 0.25°/L75 28
Météo-France S5 (Météo-France-S5) May, June TL255/1.91 = 80 km 1°/42 levels 15
Météo-France S6 (Météo-France-S6) May, June TL359/191 = 50 km 1°/75 levels 25
DWD (DWD-GCFS2.0) May, June T127/1.91 ~ 100 km 0.4°/1.40 30
CMCC (CMCC-SPS3) May, June ~110 km/L46 0.25°/L50 40
6
b) NA

a) WNP

s CMCC-SPS3 (0.94)
DWD-GCFS2.0 (0.83)

= Meteo-France S6 (0.66)
Meteo-France S5 (0.54)

m— | JKMO-GloSea5-GC2 (0.89)
ECMWEF-SEASS (0.94)

= = |BTrACS (0.93)

I Multi-Model Reanalyses

J === CMCC-5PS3 (0.83)
DWD-GCFS2.0 (0.89)

10

12

== Meteo-France S6 (0.89)
Meteo-France S5 (0.94)

m— |JKMO-GloSea5-GC2 (1.0)
ECMWEF-SEASS (1.0)

= = |BTrACS (1.0)

| Multi-Model Reanalyses

# of TCs [per year]
w

0

Befortetal. 2022




Western North Pacific North Atlantic

b) IBTFACS R ' i) MMR

m) Meteo-France S6

o) DWD-GCFS2.0 [*

=1

Befortetal. 2022 Cyclone track density
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TC predictions

TROPICAL CYCLONE GENESIS POTENTIAL INDEX

*The tropical cyclone Genesis Potential Index (GPI) links the probability of TC formation to large-
scale climate fields.

*The advantage of such formulation lies in the ability to predict TC activity without having to rely on
the climate models skill in reliably reproducing individual TCs.

*Several formulations of GPI exist, e.g. as given by Emanuel & Nolan (2014).
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GPI IS (FAIRLY) GOOD AT:
*Reproducing the spatial variability of TC genesis

0
OE 50E 100E 150E ) 160W - 110W
*Reproducing the seasona
NH

Number of Events
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GPI Interannual variability

* GPI has a low skill in representing interannual variability
* decrease in performance when applied to GCM data. Overfitting?
* the GPI formula is hyper-parametrized with many arbitrary coefficients, are they optimally

selected?
95 08 - * * ERAS
1\
90 ‘ ‘ -
_ 85
§ 04 A
= 80 ‘ £
) " : T T
QO ‘ ‘ 02 | o
- , ==
70 *
‘ 0.0 1 B L 1
65 e ENGPI i *
= |BTrACS 024
0 10 20 30 40 _

NAT ENP WNP NIN SIN WsP
Years Basin

Ascenso etal. 2023 Cavicchia et al. under review



Multi-function optimization algorithm applied

All the numerical coefficients of GPI allowed to vary

Pressure level for the large-scale variables also allowed to vary
Pareto front of solutions
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Take-home messages

1. Climate predictions: achievements and challenges

» Predictions on time scales longer than two weeks are based on large ensemble of climate
model simulations

» At the horizontal resolution allowed by current supercomputers prediction of extreme events
remain challenging

2. Artificial intelligence and climate modelling

 Artificial intelligence has recently entered the arena of weather and climate forecast in a
number of different ways

« A promising direction of research is hybrid AI-numerical forecast, with the two
complementing each other

3. Climate prediction of tropical cyclones

» Tropical cyclones are one of the worst category of natural disaster, and they are a good test
for new methods for AlI-enhanced prediction
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